skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Linz, Norbert"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Monte Carlo Simulations (MCSs) allow for the estimation of photon propagation through media given knowledge of the geometry and optical properties. Previous research has demonstrated that the inverse of this problem may be solved as well, where neural networks trained on photon distributions can be used to estimate refractive index, scattering and absorption coefficients. To extend this work, time-dependent MCSs are used to generate data sets of photon propagation through various media. These simulations were treated as stacks of 2D images in time and used to train convolutional networks to estimate tissue parameters. To find potential features that drive network performance on this task, networks were randomly generated. Generated networks were then trained. The networks were validated using 4-fold cross validation. The consistently performing top 10 networks typically had an emphasis on convolutional chains and convolutional chains ending in max pooling. 
    more » « less